Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.517
Filtrar
1.
Biomolecules ; 14(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38672445

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal motoneuron degenerative disease that is associated with demyelination. The Wobbler (WR) mouse exhibits motoneuron degeneration, gliosis and myelin deterioration in the cervical spinal cord. Since male WRs display low testosterone (T) levels in the nervous system, we investigated if T modified myelin-relative parameters in WRs in the absence or presence of the aromatase inhibitor, anastrozole (A). We studied myelin by using luxol-fast-blue (LFB) staining, semithin sections, electron microscopy and myelin protein expression, density of IBA1+ microglia and mRNA expression of inflammatory factors, and the glutamatergic parameters glutamine synthetase (GS) and the transporter GLT1. Controls and WR + T showed higher LFB, MBP and PLP staining, lower g-ratios and compact myelin than WRs and WR + T + A, and groups showing the rupture of myelin lamellae. WRs showed increased IBA1+ cells and mRNA for CD11b and inflammatory factors (IL-18, TLR4, TNFαR1 and P2Y12R) vs. controls or WR + T. IBA1+ cells, and CD11b were not reduced in WR + T + A, but inflammatory factors' mRNA remained low. A reduction of GS+ cells and GLT-1 immunoreactivity was observed in WRs and WR + T + A vs. controls and WR + T. Clinically, WR + T but not WR + T + A showed enhanced muscle mass, grip strength and reduced paw abnormalities. Therefore, T effects involve myelin protection, a finding of potential clinical translation.


Assuntos
Esclerose Lateral Amiotrófica , Modelos Animais de Doenças , Bainha de Mielina , Testosterona , Animais , Camundongos , Bainha de Mielina/metabolismo , Bainha de Mielina/efeitos dos fármacos , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Masculino , Testosterona/farmacologia , Medula Espinal/metabolismo , Medula Espinal/efeitos dos fármacos , Medula Espinal/patologia , Transportador 2 de Aminoácido Excitatório/metabolismo , Transportador 2 de Aminoácido Excitatório/genética , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/patologia
2.
Brain Res Bull ; 211: 110935, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38570076

RESUMO

Chronic ethanol consumption can lead to increased extracellular glutamate concentrations in key reward brain regions, such as medial prefrontal cortex (mPFC) and nucleus accumbens (NAc), and consequently leading to oxidative stress and neuroinflammation. Previous studies from our lab tested ß-lactam antibiotics and novel beta-lactam non-antibiotic, MC-100093, and showed these ß-lactam upregulated the major astrocytic glutamate transporter, GLT-1, and consequently reduced ethanol intake and normalized glutamate homeostasis. This present study tested the effects of novel synthetic ß-lactam non-antibiotic drug, MC-100093, in chronic ethanol intake and neuroinflammatory and trophic factors in subregions of the NAc (NAc core and shell) and mPFC (Prelimbic, PL; and Infralimbic, IL) of male P rats. MC-100093 treatment reduced ethanol intake after 5-week drinking regimen. Importantly, MC-100093 attenuated ethanol-induced downregulation of brain derived neurotrophic factor (BDNF) expression in these brain regions. In addition, MC-100093 attenuated ethanol-induced upregulation of pro-inflammatory cytokines such as TNF-a and HMGB1 in all these brain regions. Furthermore, MC-100093 treatment attenuated ethanol-induced increase in RAGE in these brain regions. MC-100093 prevented neuroinflammation caused by ethanol intake as well as increased neurotrophic factor in mesocorticolimbic brain regions. MC-100093 treatment reduced ethanol intake and this behavioral effect was associated with attenuation of reduced trophic factors and increased pro-inflammatory factors. MC-100093 is considered a small molecule that may have potential therapeutic effects for the treatment of the effects of chronic exposure to ethanol.


Assuntos
Etanol , Transportador 2 de Aminoácido Excitatório , Núcleo Accumbens , Córtex Pré-Frontal , Animais , Masculino , Transportador 2 de Aminoácido Excitatório/metabolismo , Etanol/farmacologia , Ratos , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/efeitos dos fármacos , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Biomarcadores/metabolismo , Consumo de Bebidas Alcoólicas/metabolismo , Consumo de Bebidas Alcoólicas/tratamento farmacológico , Alcoolismo/tratamento farmacológico , Alcoolismo/metabolismo , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos
3.
J Med Chem ; 67(8): 6119-6143, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38626917

RESUMO

Excitatory amino acid transporters (EAATs) are essential CNS proteins that regulate glutamate levels. Excess glutamate release and alteration in EAAT expression are associated with several CNS disorders. Previously, we identified positive allosteric modulators (PAM) of EAAT2, the main CNS transporter, and have demonstrated their neuroprotective properties in vitro. Herein, we report on the structure-activity relationships (SAR) for the analogs identified from virtual screening and from our medicinal chemistry campaign. This work identified several selective EAAT2 positive allosteric modulators (PAMs) such as compounds 4 (DA-023) and 40 (NA-014) from a library of analogs inspired by GT949, an early generation compound. This series also provides nonselective EAAT PAMs, EAAT inhibitors, and inactive compounds that may be useful for elucidating the mechanism of EAAT allosteric modulation.


Assuntos
Transportador 2 de Aminoácido Excitatório , Relação Estrutura-Atividade , Regulação Alostérica/efeitos dos fármacos , Humanos , Transportador 2 de Aminoácido Excitatório/metabolismo , Células HEK293 , Animais , Estrutura Molecular
4.
ACS Chem Neurosci ; 15(6): 1197-1205, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38451201

RESUMO

Vitamin C (Vc) plays a pivotal role in a series of pathological processes, such as tumors, immune diseases, and neurological disorders. However, its therapeutic potential for tinnitus management remains unclear. In this study, we find that Vc relieves tinnitus in noise-exposed rats. In the 7-day therapy groups, spontaneous firing rate (SFR) increases from 1.17 ± 0.10 Hz to 1.77 ± 0.15 Hz after noise exposure. Vc effectively reduces the elevated SFR to 0.99 ± 0.07 and 0.55 ± 0.05 Hz at different doses. The glutamate level in auditory cortex of noise-exposed rats (3.78 ± 0.42 µM) increases relative to that in the control group (1.34 ± 0.22 µM). High doses of Vc (500 mg/kg/day) effectively reduce the elevated glutamate levels (1.49 ± 0.28 µM). Mechanistic studies show that the expression of glutamate transporter 1 (GLT-1) is impaired following noise exposure and that Vc treatment effectively restores GLT-1 expression in the auditory cortex. Meanwhile, the GLT-1 inhibitor, dl-threo-beta-benzyloxyaspartic acid (dl-TBOA), invalidates the protection role of Vc. Our finding shows that Vc substantially enhances glutamate clearance by upregulating GLT-1 and consequently alleviates noise-induced tinnitus. This study provides valuable insight into a novel biological target for the development of therapeutic interventions that may prevent the onset of tinnitus.


Assuntos
Córtex Auditivo , Zumbido , Ratos , Animais , Córtex Auditivo/metabolismo , Ácido Ascórbico/farmacologia , Ácido Ascórbico/metabolismo , Neuroproteção , Zumbido/tratamento farmacológico , Zumbido/metabolismo , Ácido Glutâmico/metabolismo , Modelos Animais de Doenças , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Transportador 2 de Aminoácido Excitatório/metabolismo
5.
ACS Chem Neurosci ; 15(7): 1424-1431, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38478848

RESUMO

Excitatory amino acid transporters (EAATs) are important regulators of amino acid transport and in particular glutamate. Recently, more interest has arisen in these transporters in the context of neurodegenerative diseases. This calls for ways to modulate these targets to drive glutamate transport, EAAT2 and EAAT3 in particular. Several inhibitors (competitive and noncompetitive) exist to block glutamate transport; however, activators remain scarce. Recently, GT949 was proposed as a selective activator of EAAT2, as tested in a radioligand uptake assay. In the presented research, we aimed to validate the use of GT949 to activate EAAT2-driven glutamate transport by applying an innovative, impedance-based, whole-cell assay (xCELLigence). A broad range of GT949 concentrations in a variety of cellular environments were tested in this assay. As expected, no activation of EAAT3 could be detected. Yet, surprisingly, no biological activation of GT949 on EAAT2 could be observed in this assay either. To validate whether the impedance-based assay was not suited to pick up increased glutamate uptake or if the compound might not induce activation in this setup, we performed radioligand uptake assays. Two setups were utilized; a novel method compared to previously published research, and in a reproducible fashion copying the methods used in the existing literature. Nonetheless, activation of neither EAAT2 nor EAAT3 could be observed in these assays. Furthermore, no evidence of GT949 binding or stabilization of purified EAAT2 could be observed in a thermal shift assay. To conclude, based on experimental evidence in the present study GT949 requires specific assay conditions, which are difficult to reproduce, and the compound cannot simply be classified as an activator of EAAT2 based on the presented evidence. Hence, further research is required to develop the tools needed to identify new EAAT modulators and use their potential as a therapeutic target.


Assuntos
Transportador 2 de Aminoácido Excitatório , Ácido Glutâmico , Transportador 2 de Aminoácido Excitatório/metabolismo , Impedância Elétrica , Ácido Glutâmico/metabolismo , Transporte Biológico , Transportador 3 de Aminoácido Excitatório/metabolismo
6.
J Biol Chem ; 300(4): 107172, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38499151

RESUMO

The recently discovered interaction between Presenilin 1 (PS1), a catalytic subunit of γ-secretase responsible for generating amyloid-ß peptides, and GLT-1, a major glutamate transporter in the brain (EAAT2), provides a mechanistic link between these two key factors involved in Alzheimer's disease (AD) pathology. Modulating this interaction can be crucial to understand the consequence of such crosstalk in AD context and beyond. However, the interaction sites between these two proteins are unknown. Herein, we utilized an alanine scanning approach coupled with FRET-based fluorescence lifetime imaging microscopy to identify the interaction sites between PS1 and GLT-1 in their native environment within intact cells. We found that GLT-1 residues at position 276 to 279 (TM5) and PS1 residues at position 249 to 252 (TM6) are crucial for GLT-1-PS1 interaction. These results have been cross validated using AlphaFold Multimer prediction. To further investigate whether this interaction of endogenously expressed GLT-1 and PS1 can be prevented in primary neurons, we designed PS1/GLT-1 cell-permeable peptides (CPPs) targeting the PS1 or GLT-1 binding site. We used HIV TAT domain to allow for cell penetration which was assayed in neurons. First, we assessed the toxicity and penetration of CPPs by confocal microscopy. Next, to ensure the efficiency of CPPs, we monitored the modulation of GLT-1-PS1 interaction in intact neurons by fluorescence lifetime imaging microscopy. We saw significantly less interaction between PS1 and GLT-1 with both CPPs. Our study establishes a new tool to study the functional aspect of GLT-1-PS1 interaction and its relevance in normal physiology and AD models.


Assuntos
Transportador 2 de Aminoácido Excitatório , Presenilina-1 , Animais , Humanos , Camundongos , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Sítios de Ligação , Transportador 2 de Aminoácido Excitatório/química , Transportador 2 de Aminoácido Excitatório/genética , Transportador 2 de Aminoácido Excitatório/metabolismo , Transferência Ressonante de Energia de Fluorescência , Células HEK293 , Neurônios/metabolismo , Presenilina-1/química , Presenilina-1/genética , Presenilina-1/metabolismo , Ligação Proteica , Peptídeos/metabolismo
7.
Br J Pharmacol ; 181(12): 1812-1828, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38369641

RESUMO

BACKGROUND AND PURPOSE: To deepen our knowledge of the role of complement in synaptic impairment in experimental autoimmune encephalomyelitis (EAE) mice, we investigated the distribution of C1q and C3 proteins and the role of complement as a promoter of glutamate release in purified nerve endings (synaptosomes) and astrocytic processes (gliosomes) isolated from the cortex of EAE mice at the acute stage of the disease (21 ± 1 day post-immunization). EXPERIMENTAL APPROACH: EAE cortical synaptosomes and gliosomes were analysed for glutamate release efficiency (measured as release of preloaded [3H]D-aspartate ([3H]D-ASP)), C1q and C3 protein density, and for viability and ongoing apoptosis. KEY RESULTS: In healthy mice, complement releases [3H]D-ASP from gliosomes more efficiently than from synaptosomes. The releasing activity occurs in a dilution-dependent manner and involves the reversal of the excitatory amino acid transporters (EAATs). In EAE mice, the complement-induced releasing activity is significantly reduced in cortical synaptosomes but amplified in cortical gliosomes. These adaptations are paralleled by decreased density of the EAAT2 protein in synaptosomes and increased EAAT1 staining in gliosomes. Concomitantly, PSD95, GFAP, and CD11b, but not SNAP25, proteins are overexpressed in the cortex of the EAE mice. Similarly, C1q and C3 protein immunostaining is increased in EAE cortical synaptosomes and gliosomes, although signs of ongoing apoptosis or altered viability are not detectable. CONCLUSION AND IMPLICATIONS: Our results unveil a new noncanonical role of complement in the CNS of EAE mice relevant to disease progression and central synaptopathy that suggests new therapeutic targets for the management of MS.


Assuntos
Complemento C1q , Complemento C3 , Encefalomielite Autoimune Experimental , Ácido Glutâmico , Camundongos Endogâmicos C57BL , Sinaptossomos , Animais , Ácido Glutâmico/metabolismo , Sinaptossomos/metabolismo , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/patologia , Feminino , Complemento C1q/metabolismo , Complemento C3/metabolismo , Camundongos , Sinapses/metabolismo , Modelos Animais de Doenças , Transportador 2 de Aminoácido Excitatório/metabolismo , Apoptose , Astrócitos/metabolismo , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia
8.
Biochem Biophys Res Commun ; 701: 149550, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38310688

RESUMO

The beneficial effect of a beta-lactam antibiotic, Ceftriaxone (CEF), to improve depressive-like symptoms has been documented previously, attributed to its modulation of glutamate neurotransmission. Here, we aimed to determine whether CEF could improve LPS-altered glutamatergic signaling associated with neuroinflammation-allied depression. To assess our goals, we established a neuroinflammation-allied depression mice model by injecting lipopolysaccharides (LPS), followed by behavioral and biochemical analysis. LPS-treated mice displayed depressive symptoms, neuroinflammation, dysregulated glutamate and its transporter (GLT-1) expression, altered expression of astrocyte reactive markers (GFAP, cxcl10, steap4, GBP2, and SRGN), and dysregulated BDNF/TrkB signaling. However, these changes were rescued by CEF treatment, as we found decreased neuroinflammation, relief of depression symptoms, and improved GLT-1 and BDNF/TrkB signaling upon CEF treatment. Moreover, GLT-1 and BDNF/TrkB regulation role of CEF was validated by K252a and DHK treatment. In summary, the anti-depressive effects of glutamate modulators, like CEF, are closely related to their anti-inflammatory role.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Ceftriaxona , Camundongos , Animais , Ceftriaxona/farmacologia , Ceftriaxona/uso terapêutico , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Lipopolissacarídeos , Doenças Neuroinflamatórias , Ácido Glutâmico/metabolismo , Transportador 2 de Aminoácido Excitatório/metabolismo
9.
Cells ; 13(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38334617

RESUMO

We tested the effects of water-soluble single-walled carbon nanotubes, chemically functionalized with polyethylene glycol (SWCNT-PEG), on primary mouse astrocytes exposed to a severe in vitro simulated traumatic brain injury (TBI). The application of SWCNT-PEG in the culture media of injured astrocytes did not affect cell damage levels, when compared to those obtained from injured, functionalization agent (PEG)-treated cells. Furthermore, SWCNT-PEG did not change the levels of oxidatively damaged proteins in astrocytes. However, this nanomaterial prevented the reduction in plasmalemmal glutamate transporter EAAT1 expression caused by the injury, rendering the level of EAAT1 on par with that of control, uninjured PEG-treated astrocytes; in parallel, there was no significant change in the levels of GFAP. Additionally, SWCNT-PEG increased the release of selected cytokines that are generally considered to be involved in recovery processes following injuries. As a loss of EAATs has been implicated as a culprit in the suffering of human patients from TBI, the application of SWCNT-PEG could have valuable effects at the injury site, by preventing the loss of astrocytic EAAT1 and consequently allowing for a much-needed uptake of glutamate from the extracellular space, the accumulation of which leads to unwanted excitotoxicity. Additional potential therapeutic benefits could be reaped from the fact that SWCNT-PEG stimulated the release of selected cytokines from injured astrocytes, which would promote recovery after injury and thus counteract the excess of proinflammatory cytokines present in TBI.


Assuntos
Nanotubos de Carbono , Camundongos , Animais , Humanos , Astrócitos/metabolismo , Citocinas/metabolismo , Transportador 1 de Aminoácido Excitatório/metabolismo , Transportador 2 de Aminoácido Excitatório/metabolismo
10.
Arch Med Res ; 55(1): 102916, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38039802

RESUMO

Clavulanic acid (CLAV) is a non-antibiotic ß-lactam that has been used since the late 1970s as a ß-lactamase inhibitor in combination with amoxicillin, another ß-lactam with antibiotic activity. Its long-observed adverse reaction profile allows it to say that CLAV is a well-tolerated drug with mainly mild adverse reactions. Interestingly, in 2005, it was discovered that ß-lactams enhance the astrocytic expression of GLT-1, a glutamate transporter essential for maintaining synaptic glutamate homeostasis involved in several pathologies of the central nervous system (CNS). This finding, along with a favorable pharmacokinetic profile, prompted the appearance of several studies that intended to evaluate the effect of CLAV in preclinical disease models. Studies have revealed that CLAV can increase GLT-1 expression in the nucleus accumbens (NAcc), medial prefrontal cortex (PFC), and spinal cord of rodents, to affect glutamate and dopaminergic neurotransmission, and exert an anti-inflammatory effect by modulating the levels of the cytokines TNF-α and interleukin 10 (IL-10). CLAV has been tested with positive results in preclinical models of epilepsy, addiction, stroke, neuropathic and inflammatory pain, dementia, Parkinson's disease, and sexual and anxiety behavior. These properties make CLAV a potential therapeutic drug if repurposed. Therefore, this review aims to gather information on CLAV's effect on preclinical neurological disease models and to give some perspectives on its potential therapeutic use in some diseases of the CNS.


Assuntos
Antibacterianos , beta-Lactamas , Ácido Clavulânico/uso terapêutico , Ácido Clavulânico/metabolismo , Ácido Clavulânico/farmacologia , Antibacterianos/uso terapêutico , beta-Lactamas/metabolismo , beta-Lactamas/farmacologia , Núcleo Accumbens/metabolismo , Glutamatos/metabolismo , Glutamatos/farmacologia , Transportador 2 de Aminoácido Excitatório/metabolismo
11.
Neurochem Int ; 173: 105658, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38135159

RESUMO

The successful implementation of remote ischaemic conditioning as a clinical neuroprotective strategy requires a thorough understanding of its basic principles, which can be modified for each patient. The mechanisms of glutamate homeostasis appear to be a key component. In the current study, we focused on the brain-to-blood glutamate shift mediated by glutamate transporters (excitatory amino acid transports [EAATs]) and the effect of remote ischaemic preconditioning (RIPC) as a mediator of ischaemic tolerance. We used model mimicking ischaemia-mediated excitotoxicity (intracerebroventricular administration of glutamate) to avoid the indirect effect of ischaemia-triggered mechanisms. We found quantitative changes in EAAT2 and EAAT3 and altered membrane trafficking of EAAT1 on the cells of the choroid plexus. These changes could underlie the beneficial effects of ischaemic tolerance. There was reduced oxidative stress and increased glutathione level after RIPC treatment. Moreover, we determined the stimulus-specific response on EAATs. While glutamate overdose stimulated EAAT2 and EAAT3 overexpression, RIPC induced membrane trafficking of EAAT1 and EAAT2 rather than a change in their expression. Taken together, mechanisms related to glutamate homeostasis, especially EAAT-mediated transport, represents a powerful tool of ischaemic tolerance and allow a certain amount of flexibility based on the stimulus used.


Assuntos
Proteínas de Transporte de Glutamato da Membrana Plasmática , Precondicionamento Isquêmico , Humanos , Proteínas de Transporte de Glutamato da Membrana Plasmática/metabolismo , Ácido Glutâmico/toxicidade , Ácido Glutâmico/metabolismo , Transportador 2 de Aminoácido Excitatório/metabolismo , Transportador 1 de Aminoácido Excitatório/metabolismo , Transportador 3 de Aminoácido Excitatório/metabolismo , Aminoácidos Excitatórios , Isquemia
12.
Ann Clin Transl Neurol ; 10(9): 1695-1699, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37452008

RESUMO

Dravet syndrome (DS) is a monogenic, often refractory, epilepsy resultant from SCN1A haploinsufficiency in humans. A novel therapeutic target in DS that can be engaged in isolation or as adjunctive therapy is highly desirable. Here, we demonstrate reduced expression of the rodent glutamate transporter type 1 (GLT-1) in a DS mouse model, and in wild type mouse strains where Scn1a haploinsufficiency is most likely to cause epilepsy, indicating that GLT-1 depression may play a role in DS seizures. As GLT-1 can be upregulated by common and safe FDA-approved medications, this strategy may be an attractive, viable, and novel avenue for DS treatment.


Assuntos
Epilepsias Mioclônicas , Epilepsia , Transportador 2 de Aminoácido Excitatório , Animais , Humanos , Camundongos , Sistema X-AG de Transporte de Aminoácidos , Epilepsias Mioclônicas/genética , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Convulsões , Transportador 2 de Aminoácido Excitatório/genética , Transportador 2 de Aminoácido Excitatório/metabolismo
13.
Neurochem Res ; 48(9): 2847-2856, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37178383

RESUMO

Glial cells give rise to glioblastoma multiform as a primary brain tumor. In glioblastomas, neurons are destroyed via excitotoxicity which is the accumulation of excess glutamate in synaptic cavity. Glutamate Transporter 1 (GLT-1) is the main transporter that absorbs the excessive glutamate. Sirtuin 4 (SIRT4) was shown to have a potential protective role against excitotoxicity in previous studies. In this study, the regulation of dynamic GLT-1 expression by SIRT4 was analyzed in glia (immortalized human astrocytes) and glioblastoma (U87) cells. The expression of GLT-1 dimers and trimers were reduced and the ubiquitination of GLT-1 was increased in glioblastoma cells when SIRT4 was silenced; however GLT-1 monomer was not affected. In glia cells, SIRT4 reduction did not affect GLT-1 monomer, dimer, trimer expression or the ubiquitination of GLT-1. The phosphorylation of Nedd4-2 and the expression of PKC did not change in glioblastoma cells when SIRT4 was silenced but increased in glia cells. We also showed that SIRT4 deacetylates PKC in glia cells. In addition, GLT-1 was shown to be deacetylated by SIRT4 which might be a priority for ubiquitination. Therefore, we conclude that GLT-1 expression is regulated differently in glia and glioblastoma cells. SIRT4 activators or inhibitors of ubiquitination may be used to prevent excitotoxicity in glioblastomas.


Assuntos
Transportador 2 de Aminoácido Excitatório , Glioblastoma , Sirtuínas , Humanos , Astrócitos/metabolismo , Transportador 2 de Aminoácido Excitatório/genética , Glioblastoma/metabolismo , Ácido Glutâmico/metabolismo , Proteínas Mitocondriais/metabolismo , Neurônios/metabolismo , Sirtuínas/metabolismo , Ubiquitinação , Proteólise
14.
Chem Biol Interact ; 375: 110440, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-36878458

RESUMO

Guanosine has been reported to elicit antidepressant-like responses in rodents, but if these actions are associated with its ability to afford neuroprotection against glutamate-induced toxicity still needs to be fully understood. Therefore, this study investigated the antidepressant-like and neuroprotective effects elicited by guanosine in mice and evaluated the possible involvement of NMDA receptors, glutamine synthetase, and GLT-1 in these responses. We found that guanosine (0.05 mg/kg, but not 0.01 mg/kg, p. o.) was effective in producing an antidepressant-like effect and protecting hippocampal and prefrontocortical slices against glutamate-induced damage. Our results also unveiled that ketamine (1 mg/kg, but not 0.1 mg/kg, i. p, an NMDA receptor antagonist) effectively elicited antidepressant-like actions and protected hippocampal and prefrontocortical slices against glutamatergic toxicity. Furthermore, the combined administration of sub-effective doses of guanosine (0.01 mg/kg, p. o.) with ketamine (0.1 mg/kg, i. p.) promoted an antidepressant-like effect and augmented glutamine synthetase activity and GLT-1 immunocontent in the hippocampus, but not in the prefrontal cortex. Our results also showed that the combination of sub-effective doses of ketamine and guanosine, at the same protocol schedule that exhibited an antidepressant-like effect, effectively abolished glutamate-induced damage in hippocampal and prefrontocortical slices. Our in vitro results reinforce that guanosine, ketamine, or sub-effective concentrations of guanosine plus ketamine protect against glutamate exposure by modulating glutamine synthetase activity and GLT-1 levels. Finally, molecular docking analysis suggests that guanosine might interact with NMDA receptors at the ketamine or glycine/d-serine co-agonist binding sites. These findings provide support for the premise that guanosine has antidepressant-like effects and should be further investigated for depression management.


Assuntos
Ketamina , Fármacos Neuroprotetores , Animais , Camundongos , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Sistema X-AG de Transporte de Aminoácidos/farmacologia , Antidepressivos/farmacologia , Depressão/metabolismo , Glutamato-Amônia Ligase/metabolismo , Glutamato-Amônia Ligase/farmacologia , Ácido Glutâmico/farmacologia , Guanosina/farmacologia , Guanosina/metabolismo , Hipocampo , Ketamina/farmacologia , Simulação de Acoplamento Molecular , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transportador 2 de Aminoácido Excitatório
15.
J Med Chem ; 66(4): 2330-2346, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36787643

RESUMO

The excitatory amino acid transporter 2 (EAAT2) plays a key role in the clearance and recycling of glutamate - the major excitatory neurotransmitter in the mammalian brain. EAAT2 loss/dysfunction triggers a cascade of neurodegenerative events, comprising glutamatergic excitotoxicity and neuronal death. Nevertheless, our current knowledge regarding EAAT2 in neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS) and Alzheimer's disease (AD), is restricted to post-mortem analysis of brain tissue and experimental models. Thus, detecting EAAT2 in the living human brain might be crucial to improve diagnosis/therapy for ALS and AD. This perspective article describes the role of EAAT2 in physio/pathological processes and provides a structure-activity relationship of EAAT2-binders, bringing two perspectives: therapy (activators) and diagnosis (molecular imaging tools).


Assuntos
Esclerose Lateral Amiotrófica , Doenças Neurodegenerativas , Animais , Humanos , Transportador 2 de Aminoácido Excitatório/metabolismo , Doenças Neurodegenerativas/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Química Farmacêutica , Encéfalo/metabolismo , Ácido Glutâmico/metabolismo , Mamíferos/metabolismo
16.
Psychopharmacology (Berl) ; 240(4): 837-851, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36725696

RESUMO

RATIONALE AND OBJECTIVE: Post-traumatic stress disorder (PTSD) is a prevalent and debilitating psychiatric disorder. However, its specific etiological mechanism remains unclear. Previous studies have shown that traumatic stress changes metabotropic glutamate receptor 5 (mGluR5) expression in the hippocampus (HIP) and prefrontal cortex (PFC). More importantly, mGluR5 expression is often accompanied by alterations in brain-derived neurotrophic factor (BDNF). Furthermore, BDNF/tropomyosin-associated kinase B (TrkB) signaling plays multiple roles, including roles in neuroplasticity and antidepressant activity, by regulating glutamate transporter-1 (GLT-1) expression. This study aims to explore the effects of inhibiting mGluR5 on PTSD-like behaviors and BDNF, TrkB, and GLT-1 expression in the HIP and PFC of inevitable foot shock (IFS)-treated rats. METHODS: Seven-day IFS was used to establish a PTSD rat model, and 2-methyl-6-(phenylethynyl)-pyridine (MPEP) (10 mg/kg, intraperitoneal injection) was used to inhibit the activity of mGluR5 during IFS in rats. After modeling, behavioral changes and mGluR5, BDNF, TrkB, and GLT-1 expression in the PFC and HIP were examined. RESULTS: First, the IFS procedure induced PTSD-like behavior. Second, IFS increased the expression of mGluR5 and decreased BDNF, TrkB, and GLT-1 expression in the PFC and HIP. Third, the mGluR5 antagonist blocked the above behavioral and molecular alterations. CONCLUSIONS: mGluR5 was involved in IFS-induced PTSD-like behavior by changing BDNF, TrkB, and GLT-1 expression.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Transportador 2 de Aminoácido Excitatório , Receptor de Glutamato Metabotrópico 5 , Receptor trkB , Transtornos de Estresse Pós-Traumáticos , Animais , Ratos , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Hipocampo/metabolismo , Córtex Pré-Frontal/metabolismo , Receptor de Glutamato Metabotrópico 5/genética , Receptor de Glutamato Metabotrópico 5/metabolismo , Receptor trkB/genética , Receptor trkB/metabolismo , Transtornos de Estresse Pós-Traumáticos/genética , Transtornos de Estresse Pós-Traumáticos/metabolismo , Transportador 2 de Aminoácido Excitatório/genética , Transportador 2 de Aminoácido Excitatório/metabolismo
17.
Glia ; 71(5): 1197-1216, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36617748

RESUMO

The homeostasis of glutamate is mainly regulated by the excitatory amino acid transporters (EAATs), especially by EAAT2 in astrocytes. Excessive glutamate in the synaptic cleft caused by dysfunction or dysregulation of EAAT2 can lead to excitotoxicity, neuronal death and cognitive dysfunction. However, it remains unclear about the detailed regulation mechanism of expression and function of astrocytic EAAT2. In this study, first, we found increased neuronal death and impairment of cognitive function in YAPGFAP -CKO mice (conditionally knock out Yes-associated protein [YAP] in astrocytes), and identified EAAT2 as a downstream target of YAP through RNA sequencing. Second, the expression of EAAT2 was decreased in cultured YAP-/- astrocytes and the hippocampus of YAPGFAP -CKO mice, and glutamate uptake was reduced in YAP-/- astrocytes, but increased in YAP-upregulated astrocytes. Third, further investigation of the mechanism showed that the mRNA and protein levels of ß-catenin were decreased in YAP-/- astrocytes and increased in YAP-upregulated astrocytes. Wnt3a activated YAP signaling and up-regulated EAAT2 through ß-catenin. Furthermore, over-expression or activation of ß-catenin partially restored the downregulation of EAAT2, the impairment of glutamate uptake, neuronal death and cognitive decline that caused by YAP deletion. Finally, activation of EAAT2 also rescued neuronal death and cognitive decline in YAPGFAP -CKO mice. Taken together, our study identifies an unrecognized role of YAP signaling in the regulation of glutamate homeostasis through the ß-catenin/EAAT2 pathway in astrocytes, which may provide novel insights into the pathogenesis of brain diseases that closely related to the dysfunction or dysregulation of EAAT2, and promote the development of clinical strategy.


Assuntos
Astrócitos , Proteínas de Sinalização YAP , Animais , Camundongos , Astrócitos/metabolismo , beta Catenina/metabolismo , Ácido Glutâmico/metabolismo , Homeostase , Sistemas de Transporte de Aminoácidos/metabolismo , Transportador 2 de Aminoácido Excitatório/metabolismo , Transportador 1 de Aminoácido Excitatório/genética , Transportador 1 de Aminoácido Excitatório/metabolismo
18.
J Biol Chem ; 299(1): 102793, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36509140

RESUMO

Astrocytic excitatory amino acid transporter 2 (EAAT2) plays a major role in removing the excitatory neurotransmitter L-glutamate (L-Glu) from synaptic clefts in the forebrain to prevent excitotoxicity. Polyunsaturated fatty acids such as docosahexaenoic acid (DHA, 22:6 n-3) enhance synaptic transmission, and their target molecules include EAATs. Here, we aimed to investigate the effect of DHA on EAAT2 and identify the key amino acid for DHA/EAAT2 interaction by electrophysiological recording of L-Glu-induced current in Xenopus oocytes transfected with EAATs, their chimeras, and single mutants. DHA transiently increased the amplitude of EAAT2 but tended to decrease that of excitatory amino acid transporter subtype 1 (EAAT1), another astrocytic EAAT. Single mutation of leucine (Leu) 434 to alanine (Ala) completely suppressed the augmentation by DHA, while mutation of EAAT1 Ala 435 (corresponding to EAAT2 Leu434) to Leu changed the effect from suppression to augmentation. Other polyunsaturated fatty acids (docosapentaenoic acid, eicosapentaenoic acid, arachidonic acid, and α-linolenic acid) similarly augmented the EAAT2 current and suppressed the EAAT1 current. Finally, our docking analysis suggested the most stable docking site is the lipid crevice of EAAT2, in close proximity to the L-Glu and sodium binding sites, suggesting that the DHA/Leu434 interaction might affect the elevator-like slide and/or the shapes of the other binding sites. Collectively, our results highlight a key molecular detail in the DHA-induced regulation of synaptic transmission involving EAATs.


Assuntos
Ácidos Docosa-Hexaenoicos , Transportador 2 de Aminoácido Excitatório , Transmissão Sináptica , Xenopus laevis , Ácidos Docosa-Hexaenoicos/metabolismo , Transportador 2 de Aminoácido Excitatório/genética , Transportador 2 de Aminoácido Excitatório/metabolismo , Ácido Glutâmico/metabolismo , Leucina , Mutação , Xenopus laevis/metabolismo
19.
Glia ; 71(4): 1057-1080, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36573349

RESUMO

Chronic kidney disease (CKD)-associated mental disorders have been attributed to the excessive accumulation of hemodialysis-resistant indoxyl-3-sulfate (I3S) in the brain. I3S not only induces oxidative stress but is also a potent endogenous agonist of the aryl hydrocarbon receptor (AhR). Here, we investigated the role of AhR in CKD-induced brain disorders using a 5/6 nephrectomy-induced CKD mouse model, which showed increased I3S concentration in both blood and brain, anxiety and impaired novelty recognition, and AhR activation in the anterior cortex. GFAP+ reactive astrocytes were increased accompanied with the reduction of glutamate transporter 1 (GLT1) on perineuronal astrocytic processes (PAPs) in the anterior cingulate cortex (ACC) in CKD mice, and these alterations were attenuated in both neural lineage-specific and astrocyte-specific Ahr conditional knockout mice (nAhrCKO and aAhrCKO). By using chronic I3S treatment in primary astrocytes and glia-neuron (GN) mix cultures to mimic the CKD brain microenvironment, we also found significant reduction of GLT1 expression and activity in an AhR-dependent manner. Chronic I3S treatment induced AhR-dependent pro-oxidant Nox1 and AhR-independent anti-oxidant HO-1 expressions. Notably, AhR mediates chronic I3S-induced neuronal activity enhancement and synaptotoxicity in GN mix, not neuron-enriched cortical culture. In CKD mice, neuronal activity enhancement was observed in ACC and hippocampal CA1, and these responses were abrogated by both nAhrCKO and aAhrCKO. Finally, intranasal AhR antagonist CH-223191 administration significantly ameliorated the GLT1/PAPs reduction, increase in c-Fos+ neurons, and memory impairment in the CKD mice. Thus, astrocytic AhR plays a crucial role in the CKD-induced disturbance of neuron-astrocyte interaction and mental disorders.


Assuntos
Transtornos Mentais , Receptores de Hidrocarboneto Arílico , Insuficiência Renal Crônica , Animais , Camundongos , Astrócitos/metabolismo , Transportador 2 de Aminoácido Excitatório/metabolismo , Hipocampo/metabolismo , Indicã/metabolismo , Transtornos Mentais/etiologia , Transtornos Mentais/metabolismo , Camundongos Knockout , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/agonistas , Receptores de Hidrocarboneto Arílico/metabolismo , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/metabolismo
20.
Behav Brain Res ; 439: 114244, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36470419

RESUMO

Substance abuse is a worldwide problem with serious repercussions for patients and the communities where they live. Pregabalin (Lyrica), is a medication commonly used to treat neuropathic pain. Like other analgesic medications there has been concern about pregabalin abuse and misuse. Although it was initially suggested that pregabalin, like other gabapentinoids, has limited abuse liability, questions still remain concerning this inquiry. Changes in glutamate system homeostasis are a hallmark of adaptations underlying drug dependence, including down-regulation of the glutamate transporter 1 (GLT-1; SLC1A2) and the cystine/glutamate antiporter (xCT; SLC7A11). In this study, it was found that pregabalin (90 mg/kg) produces a conditioned place preference (CPP), indicative of reinforcing effects that suggest a potential for abuse liability. Moreover, like other drugs of abuse, pregabalin also produced alterations in glutamate homeostasis, reducing the mRNA expression of Slc1a2 and Slc7a11 in the nucleus accumbens (NAc) and medial prefrontal cortex (mPFC). Amoxicillin clavulanic acid, a ß-lactam antibiotic, blocked the reinforcing effects of pregabalin and normalized glutamate homeostasis. These results suggest that pregabalin has abuse potential that should be examined more critically, and that, moreover, the mechanisms underlying these effects are similar to those of other drugs of abuse, such as heroin and cocaine. Additionally, these results support previous findings showing normalization of glutamate homeostasis by ß-lactam drugs that provides a novel potential therapeutic approach for the treatment of drug abuse and dependence.


Assuntos
Combinação Amoxicilina e Clavulanato de Potássio , Transtornos Relacionados ao Uso de Substâncias , Humanos , Combinação Amoxicilina e Clavulanato de Potássio/metabolismo , Combinação Amoxicilina e Clavulanato de Potássio/farmacologia , Pregabalina/farmacologia , Núcleo Accumbens , Transtornos Relacionados ao Uso de Substâncias/metabolismo , Transportador 2 de Aminoácido Excitatório/metabolismo , beta-Lactamas/farmacologia , Glutamatos/metabolismo , Glutamatos/farmacologia , Ácido Glutâmico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...